O(6)-methylguanine-DNA methyltransferase activity, p53 gene status and BCNU resistance in mouse astrocytes.

نویسندگان

  • C L Nutt
  • N A Loktionova
  • A E Pegg
  • A F Chambers
  • J G Cairncross
چکیده

We observed previously that wild-type p53 rendered neonatal mouse astrocytes resistant to 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) in a gene dose-dependent fashion. This effect of p53 appeared to be unrelated to its cell cycle regulation or apoptotic functions. Because in many cell types O(6)-methylguanine-DNA methyltransferase (MGMT)-mediated DNA repair is an important mechanism of resistance to nitrosoureas, we measured MGMT activity in wild-type, heterozygous and p53 knockout neonatal mouse astrocytes. Wild-type p53 astrocytes had significantly greater MGMT activity than either heterozygous or p53 knockout astrocytes: MGMT activity was approximately 5-fold greater in wild-type p53 astrocytes than in p53 knockout cells. However, despite successful depletion of MGMT activity in wild-type astrocytes by O(6)-benzylguanine (BG), resistance to BCNU persisted unchanged. Moreover, we excluded the possibility that continued resistance to BCNU at the concentrations used could be explained by a compensatory induction of MGMT triggered by exposure to either BCNU or BG. Although these studies support a role for p53 regulation of MGMT in neonatal mouse astrocytes, BCNU resistance in wild-type cells appears to be mediated by a non-MGMT mechanism. Nevertheless, regulation of DNA repair by MGMT may be another mechanism by which alterations of the p53 gene promote tumor initiation or progression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential expression of drug resistance genes and chemosensitivity in glial cell lineages correlate with differential response of oligodendrogliomas and astrocytomas to chemotherapy.

The two principal subtypes of glial neoplasms, astrocytomas and oligodendrogliomas, exhibit striking differences in response to chemotherapy. This differential chemosensitivity might be explained by the specific genetic alterations causing gliomas but could also be attributable to specific properties intrinsic to the cells from which gliomas arise. To examine the possibility that chemosensitivi...

متن کامل

Astrocytomas to Chemotherapy Differential Response of Oligodendrogliomas and Chemosensitivity in Glial Cell Lineages Correlate with Differential Expression of Drug Resistance Genes and Updated Version

The two principal subtypes of glial neoplasms, astrocytomas and oligodendrogliomas, exhibit striking differences in response to chemotherapy. This differential chemosensitivity might be explained by the specific genetic alterations causing gliomas but could also be attributable to specific properties intrinsic to the cells from which gliomas arise. To examine the possibility that chemosensitivi...

متن کامل

Evidence for nucleotide excision repair as a modifying factor of O6-methylguanine-DNA methyltransferase-mediated innate chloroethylnitrosourea resistance in human tumor cell lines.

We examined the O6-methylguanine-DNA methyltransferase (MGMT) protein as well as MGMT activity levels and the excision repair cross-complementing rodent repair deficiency gene, ERCC2 (XPD), protein levels in 14 human tumor cell lines not selected for chloroethylnitrosourea (CENU) resistance. These results were compared with 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) cytotoxicity and UV light ...

متن کامل

Evidence for Nucleotide Excision Repair as a Modifying Factor of O-Methylguanine-DNA Methyltransferase-Mediated Innate Chloroethylnitrosourea Resistance in Human Tumor Cell Lines

We examined the O-methylguanine-DNA methyltransferase (MGMT) protein as well as MGMT activity levels and the excision repair cross-complementing rodent repair deficiency gene, ERCC2 (XPD), protein levels in 14 human tumor cell lines not selected for chloroethylnitrosourea (CENU) resistance. These results were compared with 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) cytotoxicity and UV light s...

متن کامل

Modulation of 1,3-bis-(2-chloroethyl)-1-nitrosourea resistance in human tumor cells using hammerhead ribozymes designed to degrade O6-methylguanine DNA methyltransferase mRNA.

O6-Methylguanine DNA Methyltransferase (MGMT) protects tumor cells from the cytotoxic effects of the DNA alkylating agent 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU). To improve the therapeutic index of BCNU, biochemical strategies to deplete MGMT activity have been developed. In the present study, a molecular strategy for modulating BCNU resistance was explored using hammerhead ribozymes (Rz)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Carcinogenesis

دوره 20 12  شماره 

صفحات  -

تاریخ انتشار 1999